Search results for "Nuclear magnetic resonance"

showing 10 items of 1743 documents

X-ray diffraction and Raman spectroscopy studies in Na1/2Bi1/2TiO3-SrTiO3-PbTiO3 solid solutions

2016

The long and short range orders in 0.4Na1/2Bi1/2TiO3-(0.6-x)SrTiO3-xPbTiO3 solid solutions were studied by x-ray diffraction and Raman spectroscopy. X-ray diffraction patterns for these composition...

010302 applied physicsDiffractionMaterials scienceAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeNuclear magnetic resonance0103 physical sciencesX-ray crystallographysymbols0210 nano-technologyRaman spectroscopySolid solutionFerroelectrics
researchProduct

Analog isolated electronic dynamometer based on a magnetoresistive current sensor.

2017

In this work, an electronic system is presented to measure the force applied by a solenoid. The originality of the work is focused on the use of a magnetoresistive current sensor to provide the isolation barrier needed in the actual industrial plant where the solenoids are working. The design of the electronic system is presented as well as experimental measurements as a result of a calibration process showing a negligible hysteresis with that specific sensor. The magnetoresistive current sensor is used to develop transmission functions rather than playing its usual sensing roles.

010302 applied physicsDynamometerMagnetoresistancebusiness.industryComputer science010401 analytical chemistryElectrical engineeringProcess (computing)Solenoid01 natural sciences0104 chemical sciencesHysteresisNuclear magnetic resonanceTransmission (telecommunications)0103 physical sciencesCalibrationCurrent sensorbusinessInstrumentationThe Review of scientific instruments
researchProduct

Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN/MnN exchange-coupled bilayers

2016

010302 applied physicsMagnetizationNuclear magnetic resonanceMaterials scienceCondensed matter physics0103 physical sciences02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technologyAnisotropyEpitaxy01 natural sciencesPhysical Review B
researchProduct

Modification of magnetic anisotropy in Ni thin films by poling of (011) PMN-PT piezosubstrates

2016

ABSTRACTThis study reports the magnetic and magnetotransport properties of 20 nm thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates. The magnetoresistance (MR), as well as the magnetization reversal, is found to depend on the polarization state of the piezosubstrate. Upon poling the PMN-PT substrate, which results in a transfer of strain to the Ni film, the MR value decreases by a factor of 12 at room temperature and a factor of 21 at 50 K for the current direction along the PMN-PT [100] direction, and slightly increases for the [01] current direction. Simultaneously, a strong increase in the …

010302 applied physicsMaterials scienceCondensed matter physicsMagnetoresistancePoling02 engineering and technologySubstrate (electronics)Sputter depositionCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic anisotropyNuclear magnetic resonanceArtificial multiferroicsthin films0103 physical sciencesmagnetoelectric couplingddc:530CrystalliteThin film0210 nano-technology
researchProduct

Thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe20Ni80 spin-valve structures

2017

Abstract We investigated the thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe 20 Ni 80 spin-valve structures. Thin film systems were obtained with the help of sputtering method. For the first type of systems two particular thicknesses ( d ML  = 3 and 20 nm) and different disposition of magnetic layers (ML) were used. For the second type different thickness of Ag ( d NML ) spacer layer was used. The research of the crystal structure was performed with the transmission electron microscope. The results demonstrate that every investigated as-deposited sample does not include solid solutions, intermetallic compounds or impurities. It has been found that among the spin-valve…

010302 applied physicsMaterials scienceSpin valveIntermetallicAnalytical chemistry02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsNuclear magnetic resonanceImpuritySputtering0103 physical sciencesThermal stabilityThin film0210 nano-technologyInstrumentationSolid solutionVacuum
researchProduct

Relaxation of polarization in (K0.5Na0.5)(Nb0.93Sb0.07)O3 ferroelectric ceramics modified by BaTiO3

2017

ABSTRACTA study of low-frequency relaxation of polarization in conventionally prepared ceramic compounds of (1-x)(K0.5Na0.5)(Nb0.93Sb0.07)O3+xBaTiO3+0.5mol.%MnO2 (x = 0.02, 0.04) examined over a wide temperature range is reported. Anomalous behavior of the temperature dependence of the coercive field Ec(T) is detected in the temperature range of the orthorhombic to tetragonal phase transition. The observed features of polarization are assigned to dynamics of the domain structure at the temperature range of phase coexistence.

010302 applied physicsPhase transitionMaterials scienceCondensed matter physicsFerroelectric ceramics02 engineering and technologyCoercivityAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)01 natural sciencesElectronic Optical and Magnetic MaterialsTetragonal crystal systemNuclear magnetic resonancevisual_art0103 physical sciencesvisual_art.visual_art_mediumOrthorhombic crystal systemCeramic0210 nano-technologyFerroelectrics
researchProduct

Synchronous precessional motion of multiple domain in a ferromagnetic nanowire by perpendicular field pulses

2014

Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest …

010302 applied physicsPhysicsMagnetization dynamicsMultidisciplinaryMagnetic domainCondensed matter physicsField (physics)Magnetic storageGeneral Physics and Astronomy02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyDisplacement (vector)Articlelaw.inventionDomain (software engineering)Magnetic fieldNuclear magnetic resonanceDomain wall (magnetism)law0103 physical sciencesddc:5300210 nano-technologyNature Communications
researchProduct

Control flow strategy in a receiver coil for nuclear magnetic resonance for imaging

2020

A mathematical discussion is introduced to describe the receiver coil characterizing a nuclear magnetic resonance for imaging, starting from a general shape of the conductor. A set of different inductance calculations have been introduced, varying the shape of the conductor. The inductance calculation led to a general expression of the magnetic field of a single coil characterized by a rectangular shape. A dynamic model of the receiver coil has been developed to represent the natural frequencies that characterize the operational bandwidth. A nonstationary control strategy is implemented to make a real time changing of the operational bandwidth. The frequency response of the coil generates …

010302 applied physicsPhysicsmedicine.diagnostic_testMechanical EngineeringAerospace EngineeringMagnetic resonance imaging01 natural sciencesTransfer function030218 nuclear medicine & medical imagingMagnetic fieldConductorInductanceReceiver coil03 medical and health sciences0302 clinical medicineNuclear magnetic resonanceControl flowMechanics of Materials0103 physical sciencesAutomotive EngineeringmedicineGeneral Materials ScienceJournal of Vibration and Control
researchProduct

Normal and relaxor ferroelectric behavior in the Ba1−xPbx(Ti1−yZry)O3 solid solutions

2017

Abstract Polycrystalline samples of Ba 1−x Pb x (Ti 1−y Zr y )O 3 (BPTZ) with x = 0.025 & 0.1 and 0.10 ≤ y ≤ 0.50 have been synthesized by high-temperature solid-state reaction technique. X-ray diffraction reveals the formation of single phase with tetragonal or cubic structure. Dielectric investigations were carried out in the temperature range from 80 to 445 K with frequencies range from 10 2 to 10 6  Hz. A broad dielectric anomaly coupled with the shift of dielectric maxima toward a higher temperature with increasing frequency indicates either a diffuse phase transition or relaxor behavior in some of these ceramics. Whatever lead content, when zirconium is substituted by titanium, T C an…

010302 applied physicsZirconiumPhase transitionMaterials scienceMechanical EngineeringMetals and AlloysAnalytical chemistrychemistry.chemical_element02 engineering and technologyDielectricAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesDielectric spectroscopyTetragonal crystal systemNuclear magnetic resonancechemistryMechanics of Materials0103 physical sciencesX-ray crystallographyMaterials Chemistry0210 nano-technologySolid solutionJournal of Alloys and Compounds
researchProduct

Multiple vibrational resonances in the Raman spectra of liquid ethanes

1990

The Raman spectra of liquid ethane, ethane-d3 and ethane-d6 were recorded and analysed. The CH3 and CD3 stretching regions were computer resolved using Cauchy-Gaussian and Voigt functions to account for asymmetric band shapes. Multiple vibrational resonances were investigated using the wavenumbers and observed intensities in these regions. The developed basis functions show strong mixing of the levels in these regions. In general the resonances appear to be less strong in the liquid phase than reported in previous studies of the gaseous state. Some new assignments in the liquid-state spectra of ethanes could be suggested.

010304 chemical physicsChemistryComputer aidLiquid phaseBasis function02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsSpectral linesymbols.namesakeLiquid stateNuclear magnetic resonance0103 physical sciencessymbolsWavenumberGeneral Materials ScienceAstrophysics::Earth and Planetary AstrophysicsPhysics::Chemical Physics0210 nano-technologyRaman spectroscopySpectroscopyMixing (physics)Journal of Raman Spectroscopy
researchProduct